

IDENTIFICATION OF PREFERENTIAL SPAWNING AREAS FOR THE EUROPEAN SQUID

M. Calvo Manazza ^{1*}, M. Cabanellas Reboredo ¹, M. Palmer ¹, B. Morales Nin ¹, J. Hernandez Urcera ², M. E. Garcí ², Á. González ² and Á. Guerra ²

¹ Mediterranean Institute for Advanced Studies - denecocheaa54@gmail.com

² Institute of Marine Investigation

Abstract

According cephalopods short life cycle, population dynamics is mainly determined by between-year variability in reproductive success. Therefore, stock management may be improved after protecting the main spawning areas. The microsites where the European squid, *Loligo vulgaris* spawns within a Marine Protected Area have been identified by deploying an array of 30 artificial structures at different depths. We believe that this species selects the spawning area searching for an optimal temperature range that maximizes egg survival. Our results suggest that adults migrate from off- to in-shore at winter, i.e., when the water temperature near the coast is appropriate. Sandy bottoms seems to be preferred, which may be related with predator avoidance.

Keywords: Cephalopods, Spawning, Marine parks, North-Western Mediterranean

Introduction

The implementation of Marine Protected Areas (MPA) is one of the keys for the protection of marine species and could be used for fisheries management^[1]. However, the high mobility of certain species, such as the European squid (*Loligo vulgaris*)^[2], with a home range higher than MPA limits the usefulness of MPAs. Although, this species seems to aggregate at specific areas to spawn^[2]. The identification of where and when these spawning aggregations occur may be very important for protecting the future recruits and for maximizing spawning success. The aim of this study is to identify the preferential spawning microsites of *L. vulgaris* within an MPA. The European squid is exploited by the trawling fleet, the small-scale fleet and the recreational fishery^[3]. The study was carried out in Cabrera National Park (CNP) a small Archipelago south of Mallorca Island (Fig. 1).

Material and Methods

30 Artificial Spawning Attractors (ASA) were deployed over three main benthic habitats (sand, seagrass and rocky bottoms), and covering different depth ranges (Figure 1). The ASA were monthly sampled from June 2012 until June 2013. Number of egg clutches per ASA was modelled using a Generalised Linear Model (GLM). The model was fitted with the *glm* function of the R package (<http://www.r-project.org/>). A Poisson distribution of the response variable (monthly number of eggs clutches per ASA) was considered. The explanatory variables considered were; i) benthic habitat, ii) depth, iii) sea temperature, and iv) the interaction between depth and sea temperature.

Results

We found spawning activity all-year-round but with seasonal changes in the preferred depth for spawning. During colder months, spawning tend to be widespread, including shallow waters. Conversely, during the rest of the year, spawning is limited to deeper sites.

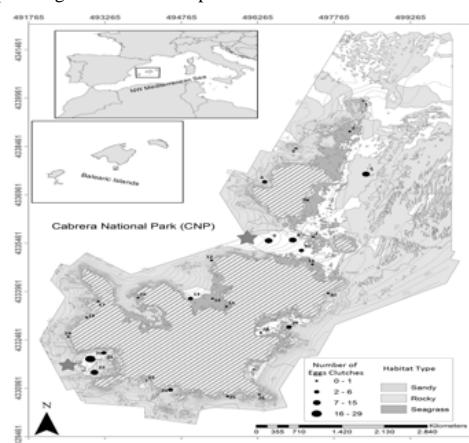


Fig. 1. Sampling area (CNP), distribution of the ASA (black circles). Size of circles indicates the number of the total eggs clutches. Stars indicate principal spawning area.

The GLM showed how the interaction between depth and sea temperature effects on squid spawning ($p<0.05$). In addition, sites with sandy bottoms were preferred as spawning habitat ($p<0.05$). Consequently, two main zones were determined as preferential spawning grounds: Canal and Ses Rates (Fig.1).

Discussion

The spawning at the park extends all-year-round. Our results agree with other studies performed for the same species, both in the Mediterranean and the Atlantic^[4,5]. Despite the European squid spawned along all the depth range sampled, results suggests the existence of an optimal depth for spawning in function of the season. They spawned preferentially at shallow waters during cold months and at deeper water at warm months. This spatio-temporal spawning pattern may be linked with the optimal temperature range for maximizing the spawning success^[6]. In addition, the spatio-temporal pattern described here is in accordance with the hypothesis of spawning migrations that has been suggested for the same species and geographic area^[7]. Sandy bottoms were preferred for *L. vulgaris* perhaps to avoid predators like *Epinephelus marginatus*^[8]. We suggest to implement management measures that take into account the spatio-temporal pattern of spawning would maximize spawning success and would improve stock abundance.

References

- 1 - Roberts M., Hawkins P., Gell R., 2005. The role of marine reserves in achieving sustainable fisheries. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*, 360 (1453) :123-132.
- 2 - Cabanellas-Reboredo M., Alós J., Palmer M., March D., and O'Dor R.K., 2012. Movement patterns of the European squid *Loligo vulgaris* during the inshore spawning season. *Mar. Ecol-Prog. Ser.*, 466 : 133-144.
- 3 - Cabanellas-Reboredo M., Alós J., Palmer M., and Morales-Nin B. 2012. Environmental effects on recreational squid jigging fishery catches. *ICES J. Mar. Sci.*, 69 : 1823-1830.
- 4 - Guerra A., and Rocha F., 1994. The life history of *Loligo vulgaris* and *Loligo forbesii* in Galician waters (NW Spain). *Fish. Res.* 21 : 43-69.
- 5 - Sifner S. K., and Vrgoc N., 2004. Population structure, maturation and reproduction of the European squid, *Loligo vulgaris*, in Central Adriatic Sea. *Fish. Res.* 69 : 239-249.
- 6 - Villanueva R., Arkhipkin A. I., Jereb P., Lefkadiotou E., Lipinski M. R., Raya C. P., Riba J., and Rocha, F. 2003. Embryonic life of the loliginid squid *Loligo vulgaris*: comparison between statoliths of Atlantic and Mediterranean populations. *Mar. Ecol-Prog. Ser.*, 253 : 197-208.
- 7 - Sanchez P., and Guerra A., 1994. Bathymetric distribution and aspects of the life history of *Loligo vulgaris* in the Catalan Sea (NW Mediterranean). *Iberus*, 12 : 1-12.
- 8 - Reñones O., Álvarez-Berastegui D., Coll J., Morey G., Navarro O., Rueda L., Grau A., Stobart B., Díaz D., Box A., Deudero S., Grau A. M., and Goñi R., 2012. Patrón de movimientos y factores ambientales que determinan la distribución del mero. In: Ramírez L. (ed.), *Proyectos de investigación en Parques Nacionales: 2008-2011*. Organismo Autónomo Parques Nacionales., Madrid, pp 407-430.