CIESM-SUB2 Cruise 2nd Leg

R/V URANIA

Messina 13 - 22 December 2005

Cruise Report

R/V Urania

The staff

CIESM SUB2 Cruise, 2nd Leg

CRUISE REPORT

Period: December 13th – December 22th, 2005

Area: Mediterranean Sea, Southern Tyrrhenian Sea

Chief Scientist: Franco Decembrini (CNR - IAMC)
Principal Investigator: Laura GIULIANO (CNR - IAMC)

Research Vessel: R/V URANIA (CNR)

Ship Captain: Vincenzo Lubrano di Lavadera (So.pro.mar)

The CIESM-SUB2 cruise was divided in two Leg: the "geomorphological survey" (1st Leg) started from Messina on December 06th 2005 and edded at the same port on 13th December.

The CIESM-SUB2 cruise (2nd Leg, "hydrobiological survey") started on December 14th 2005 from the port of Messina and ended on 22th December at the same port after 8 days of very well work. Nineteen researchers and two technicians, coming from four Mediterranean countries and different research institutes, have been involved (Table 1).

The CIESM_SUB2-2nd Leg winter cruise is the second survey of project aimed to studying, through a multidisciplinary approach, the main diversity patterns of a poorly investigated area of the Mediterranean Sea, namely the Southern Tyrrhenian area up to the Sardinia-Sicily Channels. This area plays a key role to study the complex dynamics of water exchanges and biological fluxes and biodiversity between the eastern and western Mediterranean sub-basins.

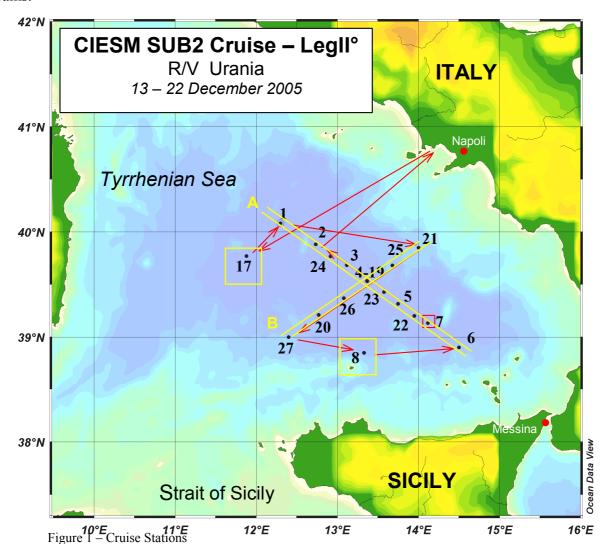
During the second cruise, to define the mesoscale gyre structure, a new sampling strategy was done. The number of stations per transect was increased; in this way, the distance between the station was reduced with a length of 10 - 15 nautical miles as required to evidenced the hydrodynamics structures.

The CIESM-SUB2 cruise objectives are:

- (a) to test ongoing hypotheses about the cause of the hydrological transition and the gyre structure derived by mathematical model in the deep and intermediate water masses of the Southern Tyrrhenian Sea;
- (b) to investigate the biodiversity changes and trends in many compartments of the food-chains of microbial components studying different biological processes in the eupthotic and deep waters of the Tyrrhenian Sea;
- (c) to optimise the retrieval of intact deep sea samples for various purposes (technological constraints), to understand how physical attributes influence biodiversity;
- (d) to provide new insights on the relationships between ecosystems functioning and biodiversity in one of the less explored deep-sea regions of the Mediterranean.

CIESM-SUB2 cruise core elements have been: CTD-O₂/Fl, equipped 24 position SBE carousel with Niskin-GO bottles and high pressure bottles (FGP), Profiling Natural Fluorescence (PNF), Bongozooplankton net.

The activity in the sampling area (Figure 1) started 20 hours later the departure from the port of Messina due to unfavourable weather conditions. Supported by favourable sea-weather conditions in the earlier morning of the day after we started the first station in the southern side of the Tyrrhenian Sea as scheduled by the cruise program.


This station, located at about 90 nautical miles W-SW from the Straits of Messina, represents one of a 120 nm long transect (transect "A" with SE-NW orientation: expected 10 stations at about 15 nm) crossing the deepest part the South Tyrrhenian Basin. A station [#4] was located in the "Vector" position, namely the central part of the basin. In particular, were sampled the same stations already carried out in July during the first cruise, adding intermediate station to increase the spatial resolution.

A double cast (up to 200 m and to the bottom) was obtained in the all the stations due to the high number of the sampled depths. Another transect with NE-SW and 90 nm long ("B"), centred on the St.4 (Vector, performed at different times) and composed by 6 stations was carried out.

Two casts [#17 and #8] the first in the NW part of the Tyrrhenian basin was obtained at "51" position (39°46.42'N 011°53.23'E) and the second ten miles at NE of Ustica Island (38°51'N 013°20'E) were sampled in order to extend the multiyear time series in these locations.

Despite of the unfavourable weather conditions (since the stand bay for 48 hrs) and the exceptional cooperation of the Urania crew the main transects were sampled increasing from 7 to 10 the transect with SE-NW orientation and adding two station at the other transect.

We carried out 18 CTD casts (mostly 3500 m deep), more then 340 water samples, and to perform 34 bongo-net casts. This is first and foremost a consequence of the excellent collaboration (along the 24 hours per day) between ship's crew (Sopromar), CNR technical support and the scientific teams.

date	time	station	event	lat	long	depth	notes
d, m	local	n°			Ŭ	m	
2,	11.08		BE	39°08.000N	014°07.006E		
	11.12	07 - PNF	ВО	39°08.0109'N	14°06.995'E	3361	0-80 m
	11.16	01 1141	END	39°08.016'N	14°06.988'E	0001	0 00 111
	11.36		BE	39°08.014'N	14°06.984'E		
	11.41	07a-CTD	BO	39°08.010'N	14°06.994'E	3361	0-200 m
	11.55		END	39°08.006'N	14°07.002'E		
	12.08		BE	39°08.009'N	14°07.004'E		
	12.18	07a-NET	END	39°08.014'N	14°07.023'E	3361	0-200 m
	12.29		BE	39°08.002'N	14°06.991'E		
	12.35	07b-NET	END	39°08.136'N	14°07.004'E	3361	0-70 m
	13.53		BE	39°08.000'N	14°06.990'E		
	14.53	07b-CTD	BO	39°08.004'N	14°07.006'E	3361	0-3348
	16.29	0/0 010	END	39°07.996'N	14°06.997'E	0001	0 0040
	17.45		BE	39°11.995'N	13°57.028'E		
	18.39	22a-CTD	BO	39°12.000'N	13°57.021'E	3518	0-3504
15 Dec	19.47	224-010	END	39°11.998'N	13°56.988'E	3310	0-3304
			BE	39°11.960'N	13°57.001'E		
	19.49 20.01	22a-NET	END	39°11.965'N	13°57.001E	1518	0-200 m
			BE	39°11.980'N	13°57.010'E		
	20.08	22b-NET	END			3516	0-70 m
	20.15		BE	39°11.964'N	13°57.018'E		
	20.37	22h CTD	DE	39°11.976'N	13°57.018'E	2515	0.200 m
	21.35	22b-CTD	END	39°11.980'N	13°57.020'E	3515	0-200 m
	20.46		END	39°11.985'N	13°57.028'E		
	22.13	Eo CTD	BE	39°18.973'N	13°45.012'E	2527	0.200
	22.17	5a-CTD	5a-CTD BO 39°18.967'N 13°44.980'E END 39°18.946'N 13°45.028'E			3527	0-200
	22.27						
	22.30	5a-NET	BE	39°18.957'N	13°45.014'E	3527	0-200 m
	22.41		END	39°18.861'N	13°44.939'E		
	22.48	5b-NET	BE	39°18.968'N	13°45.007'E	3527	0-70 m
	22.53		END	39°18.942'N	13°44.932'E		
	23.33	EL OTO	BE	39°18.965'N	13°44.944'E	2520	0.0500
	1.06	5b-CTD	BO	39°19.001'N	13°44.992'E	3526	0-3500
	2.30		END	39°19.002'N	13°44.969'E		
	3.03	00.0TD	BE	39°25.69'N	13°34.49'E	0047	0.0000
	3.56	23-CTD	BO	39°25.71'N	13°34.51'E	3317	0-3308
	5.01		END	39°25.70'N	13°34.50'E		
	5.02	23a-NET	BE				
	5.13		END				
	5.20	23b-NET	BE				
	5.27		END	00004 004114	10001 0001		
16 Dec	7.04	4- OTD	BE	39°31.981'N	13°21.993'E	0.405	0.0470
	8.00	4a-CTD	BO	39°31.998'N	13°21.994'E	3485	0-3470
	9.06		END	39°31.988'N	13°21.985'E		
	9.10	4a-NET	BE	39°32.017'N	13°22.035'E	3481	0-200 m
	9.20		END	39°31.971'N	13°22.040'E		
	9.30	4b-NET	BE	39°31.980'N	13°21.981'E	3486	0-70 m
	9.34		END	39°31.979'N	13°21.962'E		
	9.45	4-PNF	BE	39°31.969'N	13°22.050'E	3486	0-80 m
	9.56		END	39°32.000'N	13°22.099'E		
	10.07	4b-CTD	BE	39°31.993'N	13°21.986'E	3484	aborted
	10.11	-	END	problems with	fluorometer	-	

date	time	station	event	lat	long	depth	notes
d, m	local	n°	2.0110	 		m	
<i>a, m</i>	10.14	- ' '	BE	39°31.991'N	13°21.980'E	- 111	
	10.19	4b-CTD	BO	39°31.990'N	13°21.970'E	3484	0-200 m
	10.13	15 015	END	39°31.981'N	13°21.963'E	0101	0 200 111
	12.06		BE	39°41.001'N	13°06.982'E		
	12.16	3a-CTD	BO	39°41.002'N	13°06.990'E	3471	0-200 m
	12.24	00 015	END	39°40.997'E	13°06.981'E	0171	0 200 111
	12.38		BE	39°40.997'N	13°06.982'E		
	12.45	3a-Net	END	39°40.986'N	13°06.994'E	3471	0-200 m
	12.46		BE	39°40.974'N	13°06.997'E		
	12.49	3b-Net	END	39°40.965'N	13°06.989'E	3471	0-70 m
	12.55		BE	39°40.955'N	13°07.021'E		
	13.01	3-NFP	END	39°40.932'N	13°06.991'E	3469	0-80 m
	13.22		BE	39°40.98'N	13°06.99'E		
	14.16	3b-CTD	BO	39°40.992'N	13°06.983'E	3470	0-3500
	15.21	00 010	END	39°41.003'N	13°06.982'E	0470	0 0000
16 Dec	16.40		BE	39°45.986'N	13°54.997'E		
	16.48	24-CTD	END	problem with c		3592	aborted
	17.12		BE	39°46.005'N	12°55.000'E		
	17.12	24a-Net	END	problems with		3589	aborted
			BE	39°46.012'N	12°55.018'E		
	17.20 17.30	24a-Net	END	39°45.974'N	12°55.182'E	3592	0-200 m
			BE		12°55.231'E		
	17.36 17.41	24b-Net	END	39°45.930'N	12°55.325'E	3597	0-70 m
			BE	39°45.948'N	12°55.000'E		
	17.57	24-CTD		39°46.008'N		3591	0-3454
	18.45 19.50	24-010	BO END	39°46.020'N 39°45.985'N	12°55.049'E 12°55.003'E	3391	0-3454
	19.50	Change of					
	21.37	Change of	BE	sor during tran	12°44.068'E		
	22.28	2-CTD	BO	39°53.000'N 39°53.009'N	12°44.006 E	3590	0-3568
	23.43	2-010	END	39°53.009 N	12°44.071E	3390	0-3300
		Transfor to			and sea condition	one	
				ocida channel	and Sea Conditi	0115	
18 Dec			hor in front				
				ce, in front of Po	<u> </u>		
				dition checking			
			hor in front for station s		-		
	4.45	•	BE	39°45.711'N	11°52.980'E		1
	5.41	17a-CTD	BO	39°45.711N	11°53.004'E	3514	0-3480 m
	6.52	114-010	END	39°47.708'N	11°53.004 E	JJ 14	0-3400 111
				39°45.694'N	11°52.980'E		1
	7.02 7.11	17a-Net	BE END	39°45.701'N	11°52.980 E 11°52.915'E	3503	0-200 m
19 Dec	7.11		BE	39°45.701N	11°52.915 E		1
19 DEC	7.19	17b-Net	END	39°45.703 N	11°52.825'E	3502	0-70 m
		17b-CTD		vith transmissor			failed
		17b-CTD		vith transmissor			failed failed
	8.17	170-010	BE	39°45.729'N	11°52.958'E		ialieu
	8.20	17b-CTD	BO	39°45.729 N	11°52.956 E	3502	0-200 m
		170-010				3502	0-200 111
	8.32		END	39°45.705'N	11°52.946'E		
	8.38	17-NFP	BE	39°45.668'N	11°52.961'E	3501	0-80 m
	8.49		END	39°45.737'N	11°52.940'E		

date	time	station	event	lat	long	depth	notes
d, m	local	n°				m	
	13.44	OO NED	BE	39°22.181'N	13°04.649'E	0505	0.00
	13.54	26-NFP	END	39°22.205'N	13°04.545'E	3565	0-80 m
	14.06		BE	39°22.173'N	13°04.691'E		
	14.10	26a-CTD	ВО	39°22.179'N	13°04.644'E	3577	0-200 m
	14.22		END	39°22.244'N	13°04.637'E		
	14.27	00. N. (BE	39°22.221'N	13°04.660'E	0577	0.000
	14.38	26a-Net	END	39°22.158'N	13°04.606'E	3577	0-200 m
	14.48	001 11.1	BE	39°22.178'N	13°04.632'E	0.570	0.70
	14.52	26b-Net	END	39°22.179'N	13°04.623'E	3578	0-70 m
	15.00		BE	39°22.189'N	13°04.709'E		
	15.51	26b-CTD	ВО	39°22.185'N	13°04.713'E	3577	0-3557
	17.02		END	39°22.199'N	13°04.727'E		
20 Dec	19.04		BE	39°12.002'N	12°45.001'E		
	19.47	20a-CTD	ВО	39°12.00'N	12°44.77'E	2967	0-2950
	20.32		END	39°12.032'N	12°44.994'E		
	20.37		BE	39°12.032'N	12°44.954'E		
	20.49	20a-Net	END	39°12.091'N	12°44.960'E	2961	0-200 m
	20.55		BE	39°12.125'N	12°44.945'E		
	21.00	20b-Net	END	39°12.153'N	12°44.956'E	2967	0-70 m
	21.14		BE	39°12.012'N	12°45.048'E		
	21.19	20b-CTD	BO	39°12.038'N	12°44.987'E	2965	0-200 m
	21.26		END	39°12.073'N	12°44.949'E		
	23.36		BE	39°00.049'N	12°24.098'E		
	23.39	27a-CTD	BO	39°00.061'N	12°24.094'E	2341	0-200 m
	23.46		END	39°00.023'N	12°24.130'E		0 = 00
	23.51		BE	39°00.015'N	12°24.019'E		
	0.02	27a-Net	END	39°00.085'N	12°24.070'E	2342	0-200 m
	0.08		BE	39°00.004'N	12°24.013'E		
	0.13	27b-Net	END	39°00.038'N	12°24.004'E	2343	0-70 m
	0.18		BE	39°00.000'N	12°24.040'E		1
	1.30	27b-CTD	BO	39?00.001'N	12°21.011'E	2342	0-2317
	2.40		END	39°00.020'N	12°24.000'E		0 20
	6.00		BE	38°57.003'N	13°18.995'E		
	7.00	8a-CTD	BO	38°57.002'N	13°18.996'E	3474	0-3451
	7.50	00 010	END	38°56.994'N	13°18.991'E	0171	0 0 10 1
	7.58		BE	38°56.981'N	13°18.982'E		
	8.11	8a-Net	END	39°57.013'N	13°18.974'E	3474	0-200 m
21 Dec	8.22		BE	39°56.990'N	13°18.947'E		
21 200	8.27	8b-Net	END	39°57.010'N	13°18.928'E	3473	0-70 m
	8.38		BE	39°56.958'N	13°18.804'E		
	8.48	8a-NFP	END	39°56.951'N	13°18.695'E	3471	0-80 m
	9.08		BE	39°57.158'N	13°18.671'E		
	9.11	8b-CTD	BO	39°57.147'N	13°18.698'E	3471	0-200 m
	9.11	00 010	END	39°57.199'N	13°18.732'E	07/1	0 200 111
	9.29		BE	39°57.199'N	13°18.682'E		
	9.29	8b-NFP	END		13°18.622'E	3472	0-80 m
	11.03			38°57.257'N	13°19.068'ìE		-
	11.03	8c-NFP	BE END	38°57.035'N		3475	0-80 m
			BE	38°57.049'N	13°19.055'E		
	11.45	28-NFP		38°53.924'N	13°17.348'E	3470	0-80 m
	11.55		END	38°53.929'N	13°17.268'E		I

date	time	station	event	lat	long	depth	notes
d, m	local	n°				m	
	20.00		BE	39°53.97'N	14°29.98'E		
	19.53	6a-CTD	ВО	39°55.98'N	14°29.88'E	2401	0-200 m
	20.30		END	39°55.98'N	14°29.88'E		
	20.04	6a-Net	BE	38°53.997'N	14°30.008'E	2401	0-200 m
21 Dec	20.25	0a-INEL	END	38°54.007'N	14°29.994'E	2401	0-200 111
21 Dec	20.21	6b-Net	BE	38°54.001'N	14°29.997'E	2401	0-70 m
	20.26	OD-INEL	END	38°54.007'N	14°29.995'E	2401	0-70 111
	20.34		BE	38°53.998'N	14°30.003'E		
	21.06	6b-CTD	ВО	38°54.030'N	14°30.139'E	2377	0-2370
	21.40		END	38°53.955'N	14°30.121'E		

PARTICIPANTS INSTITUTES

- 1. Institute for the Coastal Marine Environment (IAMC) sect. Messina Italian National Research Council (CNR), Messina, Italy
- 2. Polytechnic University of Marche Faculty of Sciences, Ancona, Italy
- 3. Stazione Zoologica "Anton Dohrn", Napoli, Italy
- 4. University "Parthenope" of Naples, Italy
- 5. Observatoire Oceanologique CNRS Villefranche/mer, France
- 6. Milano-Bicocca University Department of Geological Sciences and Geotechnologies
- 7. Department of Animal Ecology and Marine Biology, University of Messina, Italy
- 8. Laboratoire de Microbiologie, Geochimie et Ecologie Marines (LMGEM) Centre d'Océanologie de Marseille, CNRS
- 9. University 7 November at Carthage Faculty of Sciences of Bizerte Department of Life Sciences Oceanography and Planctology Research Group Tunisia.

SCIENTIFIC STAFF

The names and identities of the embarked personnel and main activity field are given in the Table I.

	Name	Affiliation	Country	Activity
1	Franco Decembrini	CNR-IAMC	Italy	Chief Scientist
2	Giovanna MAIMONE	CNR-IAMC	Italy	Microbial respiration
3	Carmen RAFFA	CNR-IAMC	Italy	Chla, primary production
4	Fabrice JAINE	CNRS_Villefranche	France	Zooplankton
5	Christian TAMBURINI	CNRS_Marseille	France	Deep-sea high pressure
6	Jean CHARRIERE	CNRS_Marseille	France	Deep-sea high pressure
7	Rosario LAVEZZA	STZ-NA,	Italy	Biological Oceanography
8	Maurizio Azzaro	CNR-IAMC	Italy	Biological Oceanography
9	Elisa Malinverno	UNI-MI_Bicocca	Italy	Navigation - nanoplankton
10	Francesco SMEDILE	UNI-ME	Italy	Microbial ecology
11	Massimo DE LUCA	UNI-ME	Italy	Microbial diversity
12	Violetta LACONO	CNR-IAMC	Italy	Molecular microbial
13	M N. Daly Yahia	Faculté des Sciences de	Tunis	Zooplankton
		Bizerte		
14	Giuseppe SIENA	UNI-NA_Partenope	Italy	Physical Oceanography
15	Yuri Cotronei	UNI-NA_Partenope	Italy	Physical Oceanography
16	Daniela ZEPPILLI	UNI-AN	Italy	Bacteria biodiversity, viruses
17	Giocchino RUGGERI	UNI-ME	Italy	Microbial ecology
18	Tiziana CAPPELLO	UNI-ME	Italy	Student
19				

Table I – CIESM-SUB1 personnel.

DIARY (Time = local time: UTC+1h)

Dec. 14 th			
	08.00	Departure fro	om Messina port
	12.10	stop at Lipari	for shelter from the wind
Dec. 15 th			
	05.15	Departure fro	om Lipari towards station 07
	11.08 - 11.16	Station 07	PNF (0-200 m)
	11.36 - 11.55	Station 07a	CTD (0-200 m)
	12.08 - 12.18	Station 07a	Net (0-200 m)
	12.29 - 12.35	Station 07b	Net (0-70 m)
	13.53 - 16.29	Station 07b	CTD (0-3348)
	17.45 - 19.47	Station 22a	CTD (0-3504)
	19.49 - 20.01	Station 22	Net (0-200 m)
	20.08 - 20.15	Station 22	Net (0-70 m)
	20.37 - 20.46	Station 22b	CTD (0-200 m)
	22.12 - 22.27	Station 5a	CTD (0-200 m)
	22.30 - 22.41	Station 5a	Net (0-200 m)
	22.48 - 22.53	Station 5b	Net (0-70 m)

```
<u>Dec.</u> 16<sup>th</sup>
           23.33 - 02.30
                             Station 5b
                                            CTD (0-3500)
                             Station 23
           03.03 - 05.01
                                            CTD (0-3308)
           05.02 - 05.13
                             Station 23a
                                            Net (0-200 m)
           05.20 - 05.27
                             Station 23b
                                            Net (0-70 m)
           07.04 - 09.06
                             Station 4a
                                            CTD (0-3470)
           09.10 - 09.20
                             Station 4a
                                            Net (0-200 m)
           09.30 - 09.34
                             Station 4b
                                            Net (0-70 m)
           09.45 - 09.56
                             Station 4
                                            PNF (0-80 m)
                                            CTD (aborted) – problems with fluorometer
           10.07 - 10.11
                             Station 4b
           10.14 - 10.24
                             Station 4b
                                            CTD (0-200 m)
           12.06 - 12.24
                                            CTD (0-200 m)
                             Station 3a
           12.38 - 12.45
                                            Net (0-200 m)
                             Station 3a
           12.46 - 12.49
                             Station 3b
                                            Net (0-70 m)
           12.55 - 13.01
                             Station 3
                                            NFP (0-80 m)
           13.22 - 15.21
                             Station 3b
                                            CTD (0-3500)
           16.40 - 16.48
                             Station 24a
                                            CTD (aborted) – problems with the oxygen sensor
                                            Net (aborted) – problems with the winch
           17.12 - 17.18
                             Station 24a
                             Station 24a
           17.20 - 17.30
                                            Net (0-200 m)
           17.36 - 17.41
                             Station 24b
                                            Net (0-70 \text{ m})
           17-57 - 19.50
                             Station 24a
                                            CTD (0-3454)
           Change of oxygen sensor during transfer
           21.37 - 23.43
                             Station 2a
                                            CTD (0-3568)
Dec 17<sup>th</sup>
         00.30
                             Transfer towards NE for bad weather and sea conditions
                             Arrival in the Ischia-Procida channel
         07.30
         08.30
                             Stop at anchor in front of Baia
         21.30
                             Change of anchor place, in front of Pozzuoli
Dec 18<sup>th</sup>
         09.00
                             Departure for sea condition checking
                             Stop at anchor in front of Procida
         12.50
                             Departure for station st17
         17.30
Dec 19th
         04.45 - 06-52
                             Station 17a
                                            CTD (0-3480)
                             Station17a
                                            Net (0-200 m)
         07.02 - 07.19
         07.19 - 07.25
                                            Net (0-70 m)
                             Station 17b
                             Station 17b
         07.45
                                            CTD (aborted for problems with transmissometer)
                                            CTD (aborted for problems with transmissometer)
         08.10
                             Station 17b
         08.17 - 08.32
                             Station 17b
                                            CTD (0-200 m)
                                            PNF (0-80 m)
         08.38 - 08.49
                             Station 17
         11.58 - 12.10
                             Station 1
                                            PNF (0-80 m)
         12.16 - 12.28
                             Station 1a
                                            CTD (0-200 m)
         12.30 - 12.44
                             Station 1a
                                            Net (0-200 m)
         12.48 - 12.54
                             Station 1b
                                            Net (0-70 m)
         13.24 - 15.32
                             Station 1b
                                            CTD (0-3592) – changes into 1c during recovery
         15.36 - 15.50
                             Station 1b
                                            PNF (0-80 m)
```

Dec 20th

```
23.36 - 01.01
                             Station 21a
                                           CTD (0-2438)
         01.05 - 01.16
                             Station 21a
                                           Net (0-200 m)
         01.21 - 01.26
                             Station 21b
                                           Net (0-70 m)
         02.13 - 02.31
                             Station 21b
                                           CTD (0-200 m)
         04.30 - 04.35
                                           CTD (0-200 m)
                             Station 25a
         04.47 - 04.57
                             Station 25a
                                           Net (0-200 m)
         05.03 - 05.07
                             Station 25b
                                           Net (0-70 m)
         05.29 - 06.55
                             Station 25b
                                           CTD (0-2538)
         08.55
                             Station 19a
                                           CTD
                            Common whale seen at 39°31.961'N / 13°22.003'E
         09.30
         10.38 - 10.46
                             Station 19a
                                           PNF (0-3470)
                                           Net (0-200 m)
         10.51 - 11.02
                             Station 19a
         11.11 - 11.16
                                           Net (0-70 m)
                             Station 19b
         11.20 - 11.29
                             Station 19b
                                           PNF (0-80 m)
                             Station 19b
                                           CTD (0-200 m)
         11.35 - 11.49
         11.51 - 12.00
                             Station 19c
                                           PNF (0-80 m)
         13.44 - 13.54
                             Station 26
                                           PNF (0-80 m)
         14.06 - 14.22
                             Station 26a
                                           CTD (0-200 m)
         14.27 - 14.38
                             Station 26a
                                           Net (0-200 m)
         14.48 - 14.52
                             Station 26b
                                           Net (0-80 m)
         15.00 - 17.02
                             Station 26b
                                           CTD (0-200 m)
         19.04 - 19.47
                             Station 20a
                                           CTD (0-2950)
         20.37 - 20.49
                             Station 20a
                                           Net (0-200 m)
         20.55 - 21.00
                             Station 20b
                                           Net (0-70 m)
         21.14 - 21.26
                                           CTD (0-200 m)
                             Station 20b
         23.36 - 23.46
                             Station 27a
                                           CTD (0-200 m)
         23.51 - 00.02
                             Station 27a
                                           Net (0-200 m)
Dec. 21<sup>st</sup>
         00.08 - 00.13
                             Station 27b
                                           Net (0-70 \text{ m})
                                           CTD (0-2317)
         00.18 - 02.40
                             Station 27b
         06.00 - 07.50
                             Station 8a
                                           CTD (0-3451)
         07.58 - 08.11
                             Station 8a
                                           Net (0-200 m)
         08.22 - 08.27
                             Station 8b
                                           Net (0-70 m)
         08.38 - 08.48
                             Station 8a
                                           PNF (0-80 m)
                                           CTD (0-200 m)
         09.08 - 09.25
                             Station 8b
         09.29 - 09.39
                                           PNF (0-80 m)
                             Station 8b
         11.03 - 11.13
                             Station 8c
                                           PNF (0-80 m)
         11.45 - 11.55
                             Station 28
                                           PNF (0-80 m)
         20.00 - 20.10
                             Station 6a
                                           CTD (0-200 m)
         20.11 - 2025
                                           Net (0-200 m)
                             Station 6a
         20.30 - 20.37
                             Station 6b
                                           Net (0-70 m)
         20.45 - 23.05
                                           CTD (0-bottom)
                            Station 6b
```

TECHNICAL FAILURES, PROBLEMS AND SUGGESTIONS

The ship CTD SBE YSI-43 dissolved oxygen sensor failed after seven station (13 casts), this sensor was immediately replaced (using the same sensor of CNR-IAMC) due its dramatic importance for the oceanographic cruise.

Some modifications to increase and make more efficient the CTD operations could be considered in the future, some suggestions have been already given on board to the technician staff. In particular I suggest to change the fluorometer (Sea Teach) with only 3000 depth range and old electronic.

A failure of the refrigerator damaged some important samples causing both the freezing and the heating of the water samples; I suggest to check all the refrigerator.

ACKNOWLEDGEMENTS & COMMENTS:

We have completely achieved (and improved) the objectives of CIESM-SUB programme. Because of the stop due to adverse the marine-weather conditions the Sicily Channel transect has not been executed.

My personal appreciation goes to Captain Vincenzo Lubrano (Sopromar) for his competence and availability, and to the crew who greatly improved the cruise activities.

A special thanks goes to my friend Laura Giuliano who gave me the opportunity to work in the realization of this international and multidisciplinary programme.

Urania, December 22th 2005

Franco Decembrini

	ETS	×	×						×	×			×		×	×	×	×	×	×				×				Х			×	×		
	ЬР	Х								×							Х							×								×		
	Chla	×			×	×				×	×					×	×			×	×			×	×			×	×			×		
eters	DOC	×	×	×	×	×	×		×	×			×	×	×	×	×	×	×	×	×	×												
param										×										×														_
emica	PLC									×										×														-
Chemical and biochemical parameters	OC/NH								×	×																								
ical an	Ns P(×	,																								_
Chemi	Metals Nu/Ns POC/NHPLC FCM								_	×																								
	Meta																																	
	Nut.	×	×	×		×	×	×	×	×			×		×	×	×	×	×	×			×	×							×	×		
	05	×	×	×		Х	Х	×	×	×			×		×	×	×	×	×	×			×	×							×	×		
	SAL																																	
	PAR	×								×							×							×	×							×		
Sample	depths	9	12	16		10	12	16	12	8	10	11	18	16	12	10	10	14	11	10	10	14	13	10	10	15	12	10	10	-	13	10		
linates	Long. E	4°06.984'E	4°06.990°E	3°57.028'E	3°57.018'E	13°45.012'E	13°44.944'E	13°34.49′E	13°21.993'E	13°21.980'E	3°06.982'E	3°06.99°E	2°55.000'E	2°44.068'E	11°52.980'E	11°52.958'E	12°19.00'E	12°19.026'E	4°00.016'E	4°00.015'E	3°41.282'E	3°41.300'E	3°22.015'E	13°21.996'E	13°04.691′E	13°04.709'E	12°45.001'E	2°45.048'E	2°24.098′E	2°24.040'E	3°18.995'E	13°18.671'E		
CTD coordinates	Lat. N	39°08.014'N 14°06.984'E	39°08.000°N 14°06.990°E	39°11.995'N 13°57.028'E	39°11.976'N 13°57.018'E	39°18.973'N 1	39°18.965'N 1	39°25.69'N 1	39°31.981°N 1	39°31.991'N 1	39°41.001'N 13°06.982'E	39°40.98'N 13°06.99'E	39°46.008'N 12°55.000'E	39°53.000'N 12°44.068'E	39°45.711'N 1	39°45.729'N 1		40°06.011'N 1	39°52.038'N 14°00.016'E	39°52.008'N 14°00.015'E	39°41.214'N 13°41.282'E	39°41,200°N 13°41,300°E	$\overline{}$			39°22.189'N 1	39°12.002'N 1	39°12.012'N 12°45.048'E	39°00.049°N 12°24.098°E	39°00.000°N 12°24.040°E	003'N	39°57.158'N 1		
		10.36	12.53	16.45	19.37	21.13	22.33	2.03	6.04	9.14	11.06	12.22	17.57	21.37	4.45	8.17	12.16	13.24	23.36	2.13	4.30	5.29	8.55	11.35	14.06	15.00		21.14	23.36	0.18		9.08		
Time	Depth (m) Date (DDMM/YYYY) Hour				15/12/2005					10/10/00/2	0002/21/01		300000121	0002/21//1		3000000	0002/21/61							20/12/2005								21/12/2005		
	Depth (m)	3361	3361	3518	3516	3527	3526	3317	3485	3484	3471	3470	3591	3590	3504	3502	3608	3608	3474	3469	3541	2539	3464	3465	3577	3577	2967	2965	2341	2342	3474	3471		
Cast	depth (m)	200	3348	3504	200	200	3500	3308	3470	200	200	3200	3454	3568	3480	200	200	3592	3438	200	200	2538	3470	790	200	3557	2950	200	200	2317	3451	790		
CTD	cast	07a	07b	22a	22b	5a	5b	23	4a	4b	3a	3b	24	2	17a	17b	1a	1b	21a	21b	25a	25b	19a	19b	26a	26b	20a	20b	27a	27b	8a	88	Ба	99
ŧ	ñ	-	-	c		C		4	ц		u		7	8	o	0	10	2	-		Ç		13		1.4		15		15		17		00	

CIESM SUB2- 2nd Leg, 13-22 December 2005 - CRUISE REPORT

	00000	-banda	_		×	,	×	,	*	×	,	×	>	×	×		,	٧	>	×	>	×	>	×	>	<	>	×	>	×	,	×	>	<	>	c
		₽							×																											
			DNA extr	1					×		×			×		×	×		×	×	×	Х			×	×			×	×			×		×	×
			FCA		×						×	×				×	×	×	×	Х																
			FPA		×						×	×				×	×	×	×	Х																
			h EAA	×	×						×	×				×	×	×	×	×																
			card-fish EAA	×	×	×	×	×	×		×	×			×	×	×	×	×	×			×	×												
			8						×																											
	RNA		Nisk						×		×			×		Х	×																×			
Bacteria	2		모						×								×																×			
00			FISH Viable	×	×			×	×		×	×	×	×		×	×	×	×	×	×	×	×	×			×	×	×	×			×	×	×	×
			FISH	×	×						×	×					×	×																		
			PS	×	×						×	×					×	×																		
			.e. E	×	×			×	×		×	×	×	×		×	×	×	×	×	×	×	×	×			×	×	×	×			×	×	×	×
			Etero- trophic	×	×						×	×					×	×	Х	Х	Х	×											×	×		
			Auto- trophic	×	×						×	X					×	×	×	Х	Х	Х											×	×		
	_		00000	×		×					×	×	×		×	×		×	×			×	×			×	×			×	×			×	×	
	Diological		Auto- Etero- Bio	×								×							×							×								×		
	0			×	×						×	×					×	×	×	×	×	×											×	×	×	×
	Sample	lepths	(i)	9	12	16	'	10	12	16	12	8	10	11	18	16	12	10	10	14	11	10	10	14	13	10	10	15	12	10	10		13	9		
			Long. E	14°06.984°E	14°06.990°E	7.028'E	13°57.018'E	13°45.012'E	13°44.944'E	13°34.49′E	13°21.993'E	9.14 39°31.991′N 13°21.980′E	11.06 39*41.001'N 13*06.982'E	16.99'E	17.57 39°46.008'N 12°55.000'E	21.37 39°53.000'N 12°44.068'E	4.45 39°45.711'N 11°52.980'E	8.17 39°45.729'N 11°52.958'E	12°19.00'E	12°19.026'E	14°00.016′E	14°00.015'E	13°41.282'E	13°41.300'E	13°22.015'E	13°21.996′E	14.06 39°22.173°N 13°04.691°E	15.00 39°22.189'N 13°04.709'E	19.04 39*12.002'N 12*45.001'E	21.14 39*12.012*N 12*45.048*E	23.36 39*00.049*N 12*24.098*E	0.18 39°00.000'N 12°24.040'E	6.00 38°57.003°N 13°18.995°E	9.08 39°57.158°N 13°18.671°E		
	JULUILIS			142	148	13%57				132	132	1132	130	13℃	112%	112%	13	11.5	12°1						132	1132	130	√ 13ข	12°4	12°4	122	1122	13	133		_
Ę	CID coordinates		Lat. N	39°08.014°N	12.53 39°08.000°N	16.45 39°11.995'N	39°11.976'N	21.13 39°18.973'N	22.33 39°18.965'N	2.03 39°25.69'N	6.04 39°31.981°N	31.9911	41.0011	12.22 39*40.98'N 13*06.99'E	46.0081	53.0001	45.7111	45.7291	12.16 40°05.99°N	13.24 40°06.011'N	23.36 39°52.038'N	2.13 39 % 52.008 "N	4.30 39°41.214'N	5.29 39°41.200'N	8.55 39°31.943°N	11.35 39°31.972'N	22.1731	22.1891	12.0021	12.0121	00.0491	00.00	57.0031	57.1581		
				88	88	45 39°	37 39°	13 39°	е Э	8	39°	14 39°	<u> </u>	22 39°	27 39°	37 39°	45 <u>3</u> 3°	17 39°	16 40°	24 40°	36 J36	13 39°	30 33°	29 39°	8 83	35 39 39	96	30 39°.	J4 39°	14 39°	36 39°	18 39°	8	<u>ရို</u>	_	_
			Hour	10.36	12.	16.	19.37	21.	22.:	2.1	9	9.	11.1	12.	17.	21.	4	8	12.	13.	23.	2.	4.	5.	8	11.	14.	15.1	19.1	21.	23.	Ö	9	<u>.</u> 6		
į	IIIII		Date		_	I	15/12/2005		I	ı		18/12/2005	0002/21/01		17 M D M O D E	0002/21//1	19/12/2005									20/12/2005						21/12/2005				
		Depth (m)		3361	3361	3518	3516	3527	3526	3317	3485	3484	3471	3470	3591	3590	3504	3502	3608	3608	3474	3469	3541	2539			3577	3577	2967	2965	2341	2342	3474	3471		
	\$	denth (m) Depth (m)	nebili (iii)	200	3348	3504	200	200	3200	3308	3470	200	200	3500	3454	3568	3480	200	200	3592	3438	200	200	2538	3470	200	200	3557	2950	200	200	2317	3451	200		
		st CTD cast		, 07a	920	, 22a	22b	, 5a		4 23	£ 4a	7 4b	B 3a		7 24	8 2	n 17a	J7b	10 1a	1b	11 21a	1 21b	17 25a		13 19a	19b	1, 26a		1E 20a	20b	1E 27a	-	17 Ba	-	18 Ga	

CIESM SUB2- 2nd Leg, 13-22 December 2005 - CRUISE REPORT

RESEARCH "BLOCKS"

CIESM-SUB2 2nd Cruise activities may be segmented into research blocks, a brief description of the activity concerning each Work Package (WP) is reported:

<u>WP1</u>

GEOPHYSICAL SURVEY

Not present on board, executed in the 1st Leg.

WP2

PHYSICAL OCEANOGRAPHY (CTD, OX, FL)

Giuseppe Siena (1), Yuri Cotroneo (2,3), Giorgio Budillon (1)

Hydrology

Profiles of temperature, salinity, florescence, dissolved oxygen, and water samples were obtained using equipment consisted of a Sea-bird Electronics SBE911+ CTD system fitted with a couple of pumped conductivity-temperature sensor, a SBE 43 dissolved oxygen sensor. A fluorometer Seatech (3000 m) and altimeter were also installed.

Data were acquired at the maximum frequency (24 Hz) using a PC running Windows XP and Sea-Bird's Seasave version 5.33 for Windows software. Preliminary post-processing was carried out using batch files and scripts prepared by DiSAm to provide a variety of CTD products to the CIESM-SUB2 science party. The processed data was copied to a backup disk drive, plots and logs of each cast were available for the scientific teams within few minutes after the conclusion of a station (plots, files, and tables).

All profiles were planned to reach within 10 m of the bottom. Water samples were collected using a 24-position SBE 32 Carousel sampler with 12 l water sample bottles. Due to the presence of high pressure bottle (by CNRS) it was possible to install only 18 Niskin bottles on the SBE32.

Acoustic Doppler Current Profiling

Data from two hull mounted RDI-ADCP transducers (75-300 KHz) giving currents direction and intensity for the first 1000 m depth, were also collected continously during the transfers between the stations of the sampling plan, to obtain important complementary informations for the estimation of the baroclinic structures detected with hydrological data set.

⁽¹⁾ Consorzio Nazionale Interuniversitario per le Scienze del Mare–ULR "Parthenope" Napoli - Italy (2) Università di Napoli "Parthenope" – Dipartimento di Scienze per l'Ambiente - Italy

⁽³⁾ ENEA – Progetto Speciale Clima Globale - Italy

<u>WP3</u>

BIOCHEMICAL PARAMETERS

Franco Decembrini $^{(1)}$, Maurizio Azzaro $^{(1)}$, Giovanna Maimone $^{(1)}$, ElisaMalinverno $^{(2)}$, Rosario Lavezza $^{(3)}$, Carmen Raffa $^{(1)}$

The main objectives of this task are synthesized in the investigation of the chemical, biochemical and biologic proprieties of water column and microbial community, its diversity patterns in the Southern Tyrrhenian Sea. This zone up to the Sardinia Channel that is a key area for investigating the effects of large-scale atmospheric systems on the western Mediterranean basin.

We need to identify same processes as well as the gradients of phytoplankton productivity in the size-fractions of micro- nano- and pico- and its biodiversity, and of microbial respiration; and many chemical and biochemical factors such as, gradient of dissolved oxygen, nutrients of N and P availability, concentration of Dissolved Organic Carbon (DOC) and Particulate Organic Carbon (POC), concentration of photosynthetic pigments (such as chlorophyll *a*, by HPLC and fluorescence, pheo-pigments, ...). In relation to the phytoplankton biodiversity (composition and abundance) was to assess the distribution of coccolithophorid assemblages within the Tyrrhenian Sea, also as a function of the hydrology of the area.

<u>Methodologies</u>: Water samples have been collected in 18 stations identified in the general sampling strategy for biological sampling (see tab. 2).

For phytoplankton biomass, activity and biodiversity the sampling depths (generally 4-5) have been selected mainly the fluorescence by chlorophyll a (using induced fluorescence to the CTD downcast profiles and natural fluorescence profiling by PNF-300) correspond to the maximum natural fluorescence and to the Deep Chlorophyll Maximum (DCM) and to the physical and chemical discontinuities that have been detected according to the CTD downcast profiles. Optical depth are detected measuring the scalar underwater and surface PAR by the PNF-300.

The carbon assimilation capacity measurements were carried out on deck by incubators (with sun light and temperature of surface sea water) during the middle hours of day (11.00 -15.00) using "stop screen" to simulate light attenuation (generally by 10.0 % - 0.1 % of surface PAR of E_0^+). Measurements of total picoplancton, cell volume, lipopolysaccharides (LPS), fish, microbial respiration activity (ETS), nutrients concentration and the pool of carbon and nitrogen both in dissolved and particulate forms (DOC-N and POC-N) have been carried out on samples collected by means of Niskin-GO bottles at the same stations, at 15 depths (4 optical levels corresponding to the ones previously described plus 100, 200, 350, 500, 750, 1000, 1500, 2000, 2500, 3000m, and bottom). The physiological rate of oxygen consumption in the near-surface and in the deep water, was calculated from oxygen changes in sample incubated in dark bottles at *in situ* temperature and pressure.

⁽¹⁾ Italian National Research Council (CNR)- Institute for the Coastal Marine Environment (IAMC) Sect. of Messina - Italy

⁽²⁾ Milano-Bicocca University - Department of Geological Sciences and Geotechnologies – Italy

⁽³⁾ Stazione Zoologica "A.Dohrn" (SZN), Napoli - Italy

WP4

BIODIVERSITY AND ECOSYSTEM FUNCTIONING - MICROBIOLOGY

Massimo De Luca^(1,3), Violetta La Cono^(1,2), Francesco Smedile⁽¹⁾, Gioacchino Ruggeri⁽²⁾

(1) Dipartimento di Biologia Animale ed Ecologia Marina – Università di Messina (CoNISMa)- Italy (2) IAMC- Istituto per l'Ambiente Marino Costiero, Sezione Talassografico - CNR Messina- Italy (3) Dip.Te.Ris.- Dipartimento per lo studio del Territorio e delle sue Risorse – Università di Genova-Italy

At each station (St. 1, 2, 3, 4, 5, 6, 7, 8, 17, 20, 21, 25 and 26) we collected sea water samples at different depth, according to the physical and chemical survey, by means of Niskin-GO bottles. We filtered in 5 stations (1, 6, 19, 20 and 21), at 6 depths (bottom, 2000 m, 1000 m, 500 m, 200 m and surface), different sea water volumes to study microbial diversity using the CARD-FISH technique.

We treated sea water samples from Niskin on board to study viable eterotrophic bacteria on Marine Agar medium and to count and isolate luminescent bacteria on SWC (Sea Water Complete) medium, that will characterized in lab using morpho-physiological and tassonomic approaches. To study the active microbial population collected non-under pressure, to have an important information about the influence of pressure on bacteria and to research the functional diversity, 3 different stations (St. 5, 8, and 17) were sampled. We collected 500-1000 ml of deep sea water samples from deeper depth by means of the high-pressure serial sampler (HPSS) and in parallel 500-1000 ml of sea water by means of Niskin bottles in triplicate at the same depth were collected. Moreover we apply an artificial decompression of 500-1000 ml of HPSS samples to simulate the effects obtained during the transfer from depht to the surface, comparing to the Niskin bottles. Samples are filtered each one in Millipore filters 0,22 µm and stored in "RNAlater". In the stations 1, 4, 6, 20 and 21 we collected 5 l of sea water by means of Niskin bottles from 3 depths (surface, intermediate and deep water) and filtered each one in Millipore filters 0,22 µm. We will use these filters for molecular based taxonomic after DNA-RNA extraction to compare active microbial population coming from different water mass. The filters are stored at -20°C after incubation in "RNAlater" storage solution for 24 hours at 4°C.

BIODIVERSITY AND ECOSYSTEM FUNCTIONING

By Fabrice Jaine⁽¹⁾ and Mohamed Néjib Daly Yahia ⁽²⁾

(1) Laboratory of Oceanology at Villefranche sur Mer - UMR7093/CNRS, France (2) Laboratory of Oceanography and Planktology, University 7 November at Carthage, Faculty of Science of Bizerte, Tunisia

Net plankton sampling, done with a double WP₂ net of 200µm mesh, was well accomplished during this CIESM-SUB2 cruise. Our first intention was to sample all previewed stations at midday and mid-night, in order to avoid zooplankton's vertical migration hours, but it was not possible due to the bad weather which has been an important factor in our sampling grid. However, plankton net was deployed almost each day around 12h (5 stations) and 24h (4 stations). Unfortunately the bad forecast led us to leave the deep sea during 2 days in order to avoid the tempest. Only few stations have been sampled both day and night, but global cycle variations of the mesozooplankton biodiversity of the Tyrrhenian Sea should be possible to analyze.

Zooplankton samples were done at two different levels in the water column. The first one was from 200m depth to the surface; this sample integrated all the zooplankton being in the

euphotic zone at the time samples were done. The second one was from 70m depth to 0m, in order to isolate and integrate zooplankton over the thermocline. Table (V) resumes the net plankton sampling activities during the CIESM SUB2 cruise.

Number	Depth (m)	
	1 ()	Time
1-2	200-0	11h45
3-4	70-0	12h00
5-6	200-0	20h50
7-8	70-0	21h00
9-10	200-0	23h00
11-12	70-0	23h20
13-14	200-0	05h45
15-16	70-0	06h00
17-18	200-0	08h30
19-20	70-0	08h45
21-22	200-0	12h30
23-24	70-0	12h45
25-26	200-0	17h30
27-28	70-0	17h45
29-30	200-0	06h45
31-32	60-0	07h00
33-34	200-0	12h00
35-36	70-0	10h20
37-38		01h45
39-40	70-0	02h00
41-42	200-0	05h00
43-44	70-0	05h15
45-46	200-0	11h00
47-48	70-0	11h15
49-50	200-0	14h45
51-52	70-0	15h00
		21h15
		21h30
		00h30
		00h45
		08h00
		08h15
		20h45
		21h00
	3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24 25-26 27-28 29-30 31-32 33-34 35-36 37-38 39-40 41-42 43-44 45-46 47-48	3-4 70-0 5-6 200-0 7-8 70-0 9-10 200-0 11-12 70-0 13-14 200-0 15-16 70-0 17-18 200-0 19-20 70-0 21-22 200-0 23-24 70-0 25-26 200-0 27-28 70-0 29-30 200-0 31-32 60-0 33-34 200-0 37-38 200-0 37-38 200-0 39-40 70-0 41-42 200-0 43-44 70-0 45-46 200-0 47-48 70-0 49-50 200-0 51-52 70-0 53-54 200-0 55-56 70-0 57-58 200-0 59-60 70-0 61-62 200-0 63-64 70-0 65-66 200-0

Table V – Net plankton sampling activities

These samples will be analyzed at the marine station of Villefranche-sur-mer by a classical identification method but also by a new automatic identification tool : the ZOOSCAN. This

informatic tool is a quite new scanning process which permits to analyze a sub-sample very rapidly (in comparison with classical methods) and to count, measure and even pre-classify each object contained in the sample. To explain a little bit, this classification is based on the shape properties of each object, then by calculating its ESD, identifying its shape and other parameters, the software is able to pre-classify each organism into a taxonomic group.

Moreover, one part of the 0-70meters samples will be analyzed at the Faculty of Science of Bizerte, Laboratory of Oceanography and Planctology in Tunisia. By this way, we attempt to complete taxonomic and biomass investigations.

BIODIVERSITY AND ECOSYSTEM FUNCTIONING - PROCARYOTIC DIVERSITY AND ACTIVITY

Christian Tamburini⁽¹⁾, Bruno Charrière⁽¹⁾, Daniella Zeppilli⁽²⁾, Violetta Lo Cono⁽³⁾ & Maurizio Azzaro⁽³⁾

- (1) Laboratory of Marine Microbiology, Geochemistry and Ecology (LMGEM), UMR 6117 CNRS-INSU-Université de la Méditerranée, Centre d'Océanologie de Marseille, 163 avenue de Marseille 13288 Marseille Cedex 09, France
- (2) Department of Marine Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- (3) Institute for the Coastal Marine Environment (IAMC) sect. Messina. Italian National Research Council (CNR), Messina, Italy

For such an aim, seawater samples will be collected at 13 stations identified in the general sampling strategy of the cruise. The main objectives will be: to optimise the retrieval of intact deep sea samples for various purposes (technological constraints), to understand how physical attributes influence biodiversity; to provide new insights on the relationships between ecosystems functioning and biodiversity in one of the less explored deep-sea regions of the Mediterranean.

Samples were carried out in 13 stations (Table 1) in the general sampling strategy of the cruise and at 4 depths (20, 500, 3000, 3500 m) by means of Niskin-GO bottles for measurements on prokaryotic total number and biomass, hydrolytic ectoenzyme activities (phosphatase, aminopeptidase and chitinase). In parallel, some samples were carried out maintaining *in situ* conditions (pressure and temperature) for ectoenzymatic activity measurements.

This cruise was also the opportunity to test new sampling strategy using high-pressure systems. Also, new topics were explored:

- effect of pressure on viral production,
- sampling for extracellular DNA,
- sampling for RNA diversity.

Table 1. Measurements performed at each station.

Date		Depth (m)	DOC	CARD-FISH	EAA	EPA	ECA
	7.	20	X	X	Nis	Nis	Nis
15/12/05	St.7	100	X				
		500	X	X	Nis	Nis	Nis
		1000	X		3.7) I. IID	3.71
15/10/05		3000	X	X	Nis	Nis, HP	Nis
15/12/05	St.7	3400		of pressure on bact			
	S		virai p	roduction, extracell	ular DNA 🗲 la	nea	
15/12/05	7	20		X			
	. 22	500		X			
	St.	3000		X			
		3500		X			
15/12/05	22	3500	2 HPB	s to study effect of	pressure on bac	terial produ	ection,
	St. 2		viral p	roduction and extra	cellular DNA		
	S						
15/12/05	22	3500	2 HPB	s to study effect of	pressure on RN	A diversity	
	St.						
15/10/05	9 1	2.0			Т	1	
15/12/05	. 5	20		X			
	St.	500		X			
16/12/05		3000		X			
16/12/05	t. 4	surface	X		Nis	Nis	Nis
	St.	20 50	X	X	INIS	INIS	INIS
		80	X X				
		500	X	X	Nis	Nis	Nis
		3000	X	X	Nis	Nis	Nis
16/12/05	+	20		X	1 (15	1115	1 (15
- 0, - 1, 00	. 24	500		X			
	St.	3000		X			
16/12/05	2	20	X	X	Nis	Nis	Nis
	St.	500	X	X	Nis	Nis	Nis
		3000	X	X	Nis	Nis	Nis
		3500	X				
16/12/05	. 2	3500	4 HPB	s to study effect of	pressure on RN	A diversity	→ failed
	St.						
10/12/05		20			Nia	Nic	Nic
19/12/05	17	20 500	X	X	Nis Nis	Nis Nis	Nis Nis
	St.	3000	X X	X X	Nis	Nis	Nis
		3500	X	X	1413	1 113	1 113
19/12/05	7	3500		of pressure on hete	rotrophic respira	ation	
-27,12,00	17			F-123012 OII HOLO	respin		
	St.						
19/12/05	17	3500	4 HPB	s to study effect of	pressure on RN	A diversity	
				-	-	J	
	St.						
19/12/05	1	20	X	X	Nis	Nis	Nis
	St.	30	X				
		60	X				
		80	X		3.71	3.77	3.7*
		500	X	X	Nis	Nis	Nis
		3000	X	X	Nis	Nis	Nis
19/12/05		3500 3500	1 HDD	to study effect of p	Nis, HP	Nis	Nis, HP
19/12/03	t. 1	3300	1 11111	to study effect of p	nessure on nete	гопориис ге	spiration
	St.						

					I		
19/12/05	1	20		X	Nis	Nis	Nis
	St.	500		X	Nis	Nis	Nis
		2500	X	X	Nis	Nis	Nis
20/12/05	21	2500	1 HPB	to study effect of p	ressure on heter	otrophic re	spiration
	St. 2						
20/12/05		2500	2 HDD	1 00 1 0	1 4	. 1 1	. 0
20/12/05	21	2500		s to study effect of	pressure on bact	eriai produ	iction &
	St.		viral p	roduction			
20/12/05	2	20		X			
	. 25	500		X			
	St.	2400		X			
20/12/05	26	20		X			
	St. 2	500		X			
	S	3000		X			
20/12/05	20	20		X	X	X	X
	St. 2	500		X	X	X	X
	∞	3000	X	X	X	X	X
21/12/05	8	20		X	X	X	X
	St.	500		X	X	X	X
		3000	X	X	X	X	X
21/12/05	8	3000	4 HPB	s to study effect of	pressure on RNA	A diversity	
	St.			<u>-</u>	•	•	
	9 1						

Table VI - Measurements performed at each station.

<u>RNA</u>: RNA analysis after maintaining high-pressure (HP) condition comparatively to decompressed sample obtain with Niskin-GO (Nis) bottles.

<u>CARD-FISH</u>: Catalysed Reporter Deposition coupled to the Fluorescence In Situ Hybridization for prokaryotic structure analysis.

<u>EAA</u>: Ectoenzyme aminopeptidase activity (MCA-Leu degradation).

EPA: Ectoenzyme phosphatase activity (MUF-P degradation).

ECA: Ectoenzyme chitinase activity (MUF-diNAG degradation).

<u>WP5</u>

DATA GATHERING

Not present on board.

WP6

PUBLIC OUTREACH

Not present on board.