Introduction
The Mediterranean Sea, especially the eastern Basin, is a unique environment whose structure and function is poorly known. It is considered to be one of the most oligotrophic regions in the world with an overall nutrient deficit that develops towards the east. The Levantine Sea is bordered on the north by Crete, the Dodecanese Islands and Turkey. On the east it is bordered by Syria, Lebanon and Israel and to the south by Egypt and Libya. The island of Cyprus is located in the northeast quadrant of the basin (Fig.1). The margin of the basin includes an island arc from Crete through the Dodecanese Island to Rhodes. The remaining basin margins are of the less complex types consisting of continental shelves, slopes, rises and associated features. The predominant topographic feature of this region is the ‘Mediterranean Rise’ (Carter et al., 1972). The Cilician Basin lies in the northeastern part of the Mediterranean, between Northern Cyprus and the Turkish mainland. The smaller scale bathymetric features of the Levantine Basin are the Lattakia (1000–1500 m) and Cilician (1000 m). The relatively shallow Lattakia and Cilician Basins communicate with each other through a narrow channel of 700 m depth located nearby midway between the sills extending from the northeastern tip of Cyprus to the mouth of the Gulf of Iskenderun. Cyprus is the third largest island in the Mediterranean Sea, located west of Syria and south of Turkey. The island has a maximum length of about 220 km from Cape Andreas in the northeast to the western extremity of the island, its maximum width, from Cape Gata in the south to Cape Kormakiti in the north, is about 90 km. The total area of the country is 9,251 km². The surface samples were collected using a Van Veen type grab sampler in November 2011 and 36 surface sediment samples were sampled from three regions (Eastern Cyprus-Kumyali “K”, Northern Cyprus; Zeyko “Z” and Arpa Ambari “AA”, Western Cyprus; Yedi Dalga “YD”) and dried, homogenized and reduced fine powder (Fig.1).

Fig. 2. Zeyko and Arpa Ambari areas Side Scan Sonar Mosaic Map and some structures of seafloor basement.

Results
It is aimed that mapping and classification of biota and sedimentary along studied sites; Protected seagrass meadows that should be concern before engineering application in area is determined by location with visual data.

References