INTRODUCTION
Stomach content analysis provides information on recently ingested food sources while stable isotope analyses, particularly carbon and nitrogen, provides information on the long-term diets of organisms. Environmental conditions preserve chemical recording in animal tissues [1]. The analysis of different tissues gives the advantage of revealing the timescale needed to assimilate a new nutrient source [2]. Studies on fish tissue-diet isotope offset of endangered or protected fish species allows us to focus on conservation management.

MATERIAL AND METHODS
Fishes Dentex dentex, Argyrosomus regius and Xyrichtys novacula were selected owing to their wide distribution in Mediterranean waters, their economic importance and their value in the recreational fisheries of the Baleareics. Isotopic composition (δ13C and δ15N) of white muscle and scales of Dentex dentex, Argyrosomus regius and Xyrichtys novacula are represented in Figure 1.

RESULTS AND DISCUSSION
The present work shown significant correlation between stable isotopic muscle tissue and scales signatures in A. regius (p < 0.001) and in Xyrichtys novacula (p < 0.001). No correlation was found in the muscle and scale stable isotope signatures of Dentex dentex. Nonetheless, all the species sampled showed significant differences between muscle and scale stable isotope (δ13C and δ15N) signatures (Paired t-test, p < 0.01). Tissue offset of 13C and 15N values derived from isotopic analyses of D. dentex did not varied significantly (Figure 2) and presented a constancy in the offset values (enriched 3.02 ± 0.06% for 13C and depleted 0.91 ± 0.14% for 15N). A. regius and X. novacula presented a linear regression (13C enrichment of 2.27 ± 0.07% and 2.52 ± 0.04% and 15N depletion of 1.69 ± 0.06% and 0.96 ± 0.03%, respectively). The present work has yielded a correction factor for isotopic analyses that may be applied to marine fish species Argyrosomus regius and Xyrichtys novacula. The constancy in isotopic offset values of the farmed fish Dentex dentex (with a linear regression close to R2 = 0; Figure 2) was related with the straight length values of the sampled individuals. Those results imply that lethal sampling is unnecessary, since other non-lethal tissues can provide a measure of the δ13C and δ15N signatures without affecting abundances by removing resources from the ecosystem or reducing their gene pools [3].